
Detecting Malware in Android 
Applications 
Harrison Mansour
Seaver Thorn
Prof. Fu
Hani Alshahrani



Our Project

As mobile computing has become more and more pervasive in today’s world, so 
has malware that specifically targets our mobile devices. The newest iterations of 
malware are smart enough to evade most static analysis techniques and even 
some dynamic techniques. To combat this, we plan to expand upon the ideas and 
techniques presented by Andromaly, DroidDetector, MARVIN and DroidScribe, 
among others, that utilize machine learning techniques to detect malicious 
applications. 



Feature Selection

● After extracting all of the features from our application database, we had 
about 593 unique features, most of which being inappropriate to use. 

○ Some features did not show up in any applications
○ Some features were highly correlated with one another
○ Some features simply did not offer any valuable information

● We have resorted to utilizing feature selection algorithms to find the optimal 
set of features to feed into our machine learning models. This feature 
selection will help us:

○ Improve accuracy
○ Improve speed
○ Avoid overfitting



Cloudlab

● We setup a cloudlab server to run 
machine learning algorithms on.

● Seems to be marginally faster than 
our own computers.

● Bash script we wrote automates 
the activities we want to perform 
(e.g: feature selection).



Recursive Feature Elimination (RFE)

● RFE is a greedy wrapper method, in that it wraps itself around some model in 
order to enhance it. The performance of RFE is largely dependent on the 
model that it is wrapping around. 

● Here, a logistic regression model with all features is constructed. The worst 
(or best) performing feature is found and removed, and then a new logistic 
regression model is built with n-1 features. This process is continued until we 
have eliminated a sufficient number of features (as defined), or the model 
accuracy does not improve by removing features. 



Logistic Regression

● Although it is not perfect, we chose to try logistic regression first because it is 
a fast and simple technique and our dependent variable is binary (an app is 
either malware or it is not). 

● Can be thought of as finding the beta values that best fit:
○ Where 0/1 correlates to benign/malware (or malware/benign) 



Top Features (Permissions) (unordered)
● BATTERY_STATS
● CALL_PRIVILEGED
● DELETE_PACKAGES
● PERSISTENT_ACTIVITY
● READ_LOGS
● SYSTEM_ALERT_WINDOW
● UPDATE_DEVICE_STATS
● WRITE_CALENDAR
● WRITE_CONTACTS
● GET_ACCOUNTS
● READ_PHONE_STATE
● CALL_PHONE
● PROCESS_OUTGOING_CALLS
● SEND_SMS
● READ_SMS
● ACCESS_WIFI_STATE
● CHANGE_WIFI_MULTICAST_STATE
● MODIFY_AUDIO_SETTINGS
● WAKE_LOCK
● WRITE_SYNC_SETTINGS

A description of these 
permissions and what they 
do can be found here: 
http://techblogon.com/andr
oid-permissions-list-exampl
e/ 

http://techblogon.com/android-permissions-list-example/
http://techblogon.com/android-permissions-list-example/
http://techblogon.com/android-permissions-list-example/
http://techblogon.com/android-permissions-list-example/


Top Features (System Information)
● VmPeak
● VMSize
● VMHWM
● VMRSS
● VmData
● voluntary_ctxt_switches
● minorfaults
● minorfaultsch
● sizeM
● caught_signals
● Number_pages_swapped
● Number_pages_real_memory
● rssM
● clock_gettime
● futex
● gettimeofday
● getuid
● read1
● recv

Many of these features 
are Linux system calls. 
We will need to 
understand how these 
work.

The system information 
indicates that malicious 
and benign apps use 
memory in very different 
ways.



This Week

● Standardize our dataset using a data standardization algorithm. This makes 
the mean 0 and standard deviation 1 in all of our fields. This will be done to 
eliminate potential problems with negative numbers.

● Run more feature selection algorithms on our dataset to make sure we have 
the best features.

● Test many Machine Learning models to use these features and classify new 
malware.



Questions?


