Detecting Malware in Android

Professor Fu Hani Alshahrani Harrison Mansour Seaver Thorn

Outline

- Key Terms
- Fisher Score
- Chi Square
- Cross Validation
- Python Source Code
- Last Week
- Features Correlation
- Preliminary Results
- Timeline
- This week

Keywords

Feature selection

 An algorithm used to reduce the number of predictor variables in machine learning. Often used to simplify models, shorten training time, and avoid overfitting.

Keywords (cont)

Accuracy

$$ACC = (TP + TN)/(TP + FP + FN + TN)$$

Data Standardization

 Modify the dataset to achieve a mean of 0 and std deviation of 1 on all variables. This is done to avoid potential problems with some features returning negative numbers. Doing this technique increased accuracy by 25% in SVM.

Fisher Score (Feature Selection Metric)

- For a feature f, the higher the F-score, the more discriminative and important f is for classification accuracy.
- Calculated on feature vectors \vec{x}_k , k = 1 ... m
- n_+ and n_- are the number of positive (malware) and negative (benign) samples
- $\bar{x}_i, \bar{x}_i^+, \bar{x}_i^-$ Are the average of the i-th feature for the whole, positive, and negative sets

$$F(i) \equiv \frac{(\bar{x}_i^{(+)} - \bar{x}_i)^2 + (\bar{x}_i^{(-)} - \bar{x}_i)^2}{\frac{1}{n_+ - 1} \sum_{k=1}^{n_+} (x_{k,i}^{(+)} - \bar{x}_i^{(+)})^2 + \frac{1}{n_- - 1} \sum_{k=1}^{n_-} (x_{k,i}^{(-)} - \bar{x}_i^{(-)})^2}$$

Chi-Square (Feature Selection Metric)

- Statistical method that can understand the relation between observed variables and the expected results
- Used in Python to determine the optimal number of features from our dataset.

The value of the test-statistic is

$$\chi^2 = \sum_{i=1}^n rac{(O_i - E_i)^2}{E_i} = N \sum_{i=1}^n rac{(O_i/N - p_i)^2}{p_i}$$

where

 χ^2 = Pearson's cumulative test statistic, which asymptotically approaches a χ^2 distribution.

 O_i = the number of observations of type i.

N = total number of observations

 $E_i=Np_i$ = the expected (theoretical) frequency of type i, asserted by the null hypothesis that the fraction of type i in the population is p_i

n = the number of cells in the table.

Cross-validation

- Iteration 2

 Iteration 3

 Iteration k=4

 All data
- The data is split into k equal size samples.
- K-1 samples are used for training the machine learning model.
- 1 set is used for testing the machine learning model based on the training data.
- Data is typically split so there is the same proportion of true/false values in each sample.
- In our experiments, we have split the data only into 2 sets, one training and one test set. We have found that a 70% training and 30% testing set has given us good results.

Python source code

```
best acc = 0
optimal features=0
while test percent <= 0.5:
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_percent, random_state=40)
    kbest = SelectKBest(feature_selection_method, "all")
    for i in range (1, size):
        num fea = i
        # Train with cross validation
        pipeline = Pipeline([('kbest', kbest), (classifier_name, classifier )])
        grid_search = GridSearchCV(pipeline, param_grid={"kbest_k": range(1, num_fea+1), 'lr_C': np.logspace(-10, 10, 5)}, cv=nfolds)
        grid_search.fit(X_train, y_train)
        y predict = grid search.predict(X test)
        acc = accuracy_score(y_test, y_predict)
        xvals = np.append(xvals, num_fea)
        yvals = np.append(yvals, acc)
        print "{} accuracy with {} features using {}% training set: {}% \n".format(classifier_name,i,1-test_percent,acc*100)
        if acc>best acc:
            opt_test_percent = test_percent
            best acc=acc
            optimal features=i
    test percent = test percent + 0.1
```

Last week

- Day 1: Use F-Score to compare the best feature selection with RFE. Work on Python scripts.
- Day 2: Attempt to calculate best feature size. Many algorithms give different results. Used chi-square, and F-Score as our metric.
- Day 3: Graph and record results of feature selection. Attempt first machine learning algorithm which achieves 96.5% accuracy. (Random Forest)
- Day 4: Modify python scripts to work with many different feature selection, and machine learning algorithms.
- Day 5: Run this script over the weekend to test for the best feature selection algorithm and machine learning algorithm.

Features correlation

- ACCESS_CHECKIN_PROPERTIES and ACCOUNT_MANAGER have a correlation coefficient of 0.707025
- ACCESS_CHECKIN_PROPERTIES and BIND_INPUT_METHOD have a correlation coefficient of 0.707025 also (coincidence?)
- ACCESS_CHECKIN_PROPERTIES and BROADCAST_PACKAGE_REMOVED have a correlation coefficient of 0.707025

- Correlation Matrix of features
- Largest set of correlated features is in top left
 - This area represents permissions.
- Most features have correlation very close to zero

Preliminary Results

- Running the feature selection algorithm using F-Score and SVM with a linear kernel.
- Automated script is running to determine best machine learning algorithm.
 - Determining best features by F-Score and chi2, running each machine learning algorithm twice using different feature selection algorithms.
 - Testing Logistic Regression, Gaussian Naive Bayes, Random Forests, and SVM with linear and rbf kernel.

Timeline

Week 1

- · Project Introduction
- Reading about Android OS and general security practices

Week 2

- · Reading about Machine Learning
- · Hands on work with Python and Machine Learning

Week 3

 Analyze features of malicious/benign applications on Android

Week 4

· Categorize features of malware applications

Week 5

- Propose a detection technique
- · Implement detection technique with Machine Learning.

Week 6

 Compare results of using different Machine Learning algorithms.

Week 7

· Improve detection rates based on the results.

Week 8

· Start writing first draft of final report/publishable results

Week 9

Revise draft

Week 10

Finalize paper and submit deliverables

This week

- Analyze results from last week
- Implement the best machine learning algorithm based on these results.
- Fine-tune

Questions?

References

- Weisstein, Eric W. "Chi-Squared Test". MathWorld.
- Amirudin, D. (2014, April 14). Gini, ROC, AUC (and Accuracy). Retrieved June 9, 2017, from https://staesthetic.wordpress.com/2014/04/14/gini-roc-auc-and-accuracy/
- KAUSHIK, SAURAV. (2014, December 1). Introduction to Feature Selection methods with an example (or how to select the right variables?). Retrieved June 9, 2017, from https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/
- Lindorfer, M., Neugschwandtner, M., & Platzer, C. (2015, July). Marvin: Efficient and comprehensive mobile app classification through static and dynamic analysis. In *Computer Software and Applications Conference* (COMPSAC), 2015 IEEE 39th Annual (Vol. 2, pp. 422-433). IEEE.